Teaching Fluid Mechanics For Undergraduate Students In

This book contains twelve chapters detailing significant advances and applications in fluid dynamics modeling with focus on biomedical, bioengineering, chemical, civil and environmental engineering, aeronautics, astronautics, and automotive. We hope this book can be a useful resource to scientists and engineers who are interested in fundamentals and applications of fluid dynamics.

A Brief Introduction to Fluid Mechanics, 5th Edition is designed to cover the standard topics in a basic fluid mechanics course in a streamlined manner that meets the learning needs of today's students better than the dense, encyclopedic manner of traditional texts. This approach helps students connect the math and theory to the physical world and practical applications and apply these connections to solving problems. The text lucidly presents basic analysis techniques and addresses practical concerns and applications, such as pipe flow, open-channel flow, flow measurement, and drag and lift. It offers a strong visual approach with photos, illustrations, and videos included in the text, examples and homework problems to emphasize the practical application of fluid mechanics principles.

This book collects invited lectures and selected contributions presented at the Enzo Levi and XVII Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2012. It is intended for fourth-year undergraduate and graduate students, and for scientists in the fields of physics, engineering and chemistry with an interest in Fluid Dynamics from experimental, theoretical and computational points of view. The invited lectures are introductory in nature and avoid the use of complicated mathematics. The other selected contributions are also suitable for fourth-year undergraduate and graduate students. The Fluid Dynamics applications include oceanography, multiphase flows, convection, diffusion, heat transfer, rheology, granular materials, viscous flows, porous media flows and astrophysics. The material presented in the book includes recent advances in experimental and computational fluid dynamics and is well-suited to both teaching and research.

This book offers the latest research and new perspectives on Interactive Collaborative Learning and Engineering Pedagogy. We are currently witnessing a significant transformation in education, and in order to face today's real-world challenges, education has to find innovative ways to quickly respond to these new needs. Addressing these aspects was the chief aim of the 21st International Conference on Interactive Collaborative Learning (ICL2018), which was held on Kos Island, Greece from September 25 to 28, 2018. Since being founded in 1998, the conference has been devoted to new approaches in learning, with a special focus on collaborative learning. Today the ICL conferences offer a forum for exchanging information on relevant trends and research results, as well as sharing practical experiences in learning and engineering pedagogy. This book includes papers in the fields of: * New Learning Models and Applications * Pilot Projects: Applications * Project-based Learning * Real-world Experiences * Remote and Virtual Laboratories * Research in Engineering Pedagogy * Technical Teacher Training It will benefit a broad readership, including policymakers, educators, researchers in pedagogy and learning theory, school teachers, the learning industry, further education lecturers, etc.

Fluid Mechanics And Hydraulic Machines is designed for the course on fluid mechanics and hydraulic machines offered to the undergraduate students of mechanical and civil engineering. Written in a lucid style, the book lays emphasis on explaining the logic and physics of critical problems to develop analytical skills in the reader.

This is a comprehensive and accessible text that discusses all the aspects of fluid mechanics in concise manner and easy to understand language. The contents of the book have been designed to match with the exact needs of the students. The book has attempted to provide linkages between the different fundamental concepts of fluid mechanics. It gives a holistic knowledge of the logic behind each of them through illustrations and simple worked-out examples. These features will help to approach any problem in a systematic way based on the theory learnt. After the end of each chapter, students will have a chance to review a summary of the presented features. Chapter-end problems have been carefully selected to supplement the theoretical knowledge. The book contains a list of important references at the end of each chapter, to serve as a guide to those students and teachers who wish to delve deeper into the subject matter.

An ideal textbook for civil and environmental, mechanical, and chemical engineers taking the required Introduction to Fluid Mechanics course, Fluid Mechanics for Civil and Environmental Engineers offers clear guidance and builds a firm real-world foundation using practical examples and problem sets. Each chapter begins with a statement of objectives, and includes practical examples to relate the theory to real-world engineering design challenges. The author places special emphasis on topics that are included in the Fundamentals of Engineering exam, and make the book more accessible by highlighting keywords and important concepts, including Mathcad algorithms, and providing chapter summaries of important concepts and equations. In this new edition of Fluid Mechanics, which is a revised and substantially expanded version of the first edition, several new topics like open channel flow, hydraulic turbines, hydraulic transients, flow measurements and pumps and fans have been added. The chapter on one-dimensional viscous flow has also been expanded. With the addition of five new chapters, the treatment is now more indepth and comprehensive.
The book gives a thorough analysis of topics such as fluid statics, fluid kinematics, analysis of finite control volumes, and the mechanical energy equation. It provides a comprehensive description of one-dimensional viscous flow, dimensional analysis, two-dimensional flow of ideal fluids, and normal and oblique shocks. Each chapter ends with a Summary and Exercises, which enables the student to recapture the topics discussed and drill him in the theory. Finally, the worked-out examples with solutions to most of them_should be of considerable assistance to the reader in comprehending the problems discussed. The book should prove to be an ideal text for the undergraduate students of Civil and Mechanical Engineering and as a ready reference for the first-level postgraduate student.

Fluid Mechanics: An Intermediate Approach addresses the problems facing engineers today by taking on practical, rather than theoretical problems. Instead of following an approach that focuses on mathematics first, this book allows you to develop an intuitive physical understanding of various fluid flows, including internal compressible flows with simultaneous area change, friction, heat transfer, and rotation. Drawing on over 40 years of industry and teaching experience, the author emphasizes physics-based analyses and quantitative predictions needed in the state-of-the-art thermofluids research and industrial design applications. Numerous worked-out examples and illustrations are used in
the book to demonstrate various problem-solving techniques. The book covers compressible flow with rotation, Fanno flows, Rayleigh flows, isothermal flows, normal shocks, and oblique shocks; Bernoulli, Euler, and Navier-Stokes equations; boundary layers; and flow separation. Includes two value-added chapters on special topics that reflect the state of the art in design applications of fluid mechanics Contains a value-added chapter on incompressible and compressible flow network modeling and robust solution methods not found in any leading book in fluid mechanics Gives an overview of CFD technology and turbulence modeling without its comprehensive mathematical details Provides an exceptional review and reinforcement of the physics-based understanding of incompressible and compressible flows with many worked-out examples and problems from real-world fluids engineering applications Fluid Mechanics: An Intermediate Approach uniquely aids in the intuitive understanding of various fluid flows for their physics-based analyses and quantitative predictions needed in the state-of-the-art thermofluids research and industrial design applications.

This practical book provides instruction on how to conduct several "hands-on" experiments for laboratory demonstration in the teaching of heat transfer and fluid dynamics. It is an ideal resource for chemical engineering, mechanical engineering, and engineering technology professors and instructors starting a new laboratory or in need of cost-effective and easy to replicate demonstrations. The book details the equipment required to perform each experiment (much of which is made up of materials readily available is most laboratories), along with the required experimental protocol and safety precautions. Background theory is presented for each experiment, as well as sample data collected by students, and a complete analysis and treatment of the data using correlations from the literature.

Fluid mechanics is a core component of many undergraduate engineering courses. It is essential for both students and lecturers to have a comprehensive, highly illustrated textbook, full of exercises, problems and practical applications to guide them through their study and teaching. Engineering Fluid Mechanics By William P. Grabel is that book. The ISE version of this comprehensive text is especially priced for the student market and is an essential textbook for undergraduates (particularly those on mechanical and civil engineering courses) designed to emphasis the physical aspects of fluid mechanics and to develop the analytical skills and attitudes of the engineering student. Example problems follow most of the theory to ensure that students easily grasp the calculations, step by step processes outline the procedure used, so as to improve the students' problem solving skills. An Appendix is included to present some of the more general considerations involved in the design process. The author also links fluid mechanics to other core engineering courses an undergraduate must take (heat transfer, thermodynamics, mechanics of materials, statistics and dynamics) wherever possible, to build on previously learned knowledge.

The book "Wind Tunnels and Experimental Fluid Dynamics Research" is comprised of 33 chapters divided in five sections. The first 12 chapters discuss wind tunnel facilities and experiments in incompressible flow, while the next seven chapters deal with building dynamics, flow control and fluid mechanics. Third section of the book is dedicated to chapters discussing aerodynamic field measurements and real full scale analysis (chapters 20-22). Chapters in the last two sections deal with turbulent structure analysis (chapters 23-25) and wind tunnels in compressible flow (chapters 26-33). Contributions from a large number of international experts make this publication a highly valuable resource in wind tunnels and fluid dynamics field of research.

Fluid Mechanics is intended for use in Fluid Mechanics courses found in Civil and Environmental, General Engineering, and Engineering Technology and Industrial Management departments. It is also serves as a suitable reference and introduction to Fluid Mechanics principles. Fluid Mechanics provides a comprehensive and well-illustrated introduction to the theory and application of Fluid Mechanics. The text presents a commitment to the development of student problem-solving skills and features many of the same pedagogical aids unique to Hibbeler texts. MasteringEngineering for Fluid Mechanics is a total learning package that is designed to improve results through personalized learning. This innovative online program emulates the instructor's office–hour environment, guiding students through engineering concepts from Fluid Mechanics with self-paced individualized coaching. Teaching and Learning Experience This program will provide a better teaching and learning experience—for you and your students. It provides:

Individualized Coaching: MasteringEngineering provides students with wrong-answer specific feedback and hints as they work through tutorial homework problems.

Problem Solving: A large variety of problem types stress practical, realistic situations encountered in professional practice, with varying levels of difficulty. Visualization: The photos are designed to help students visualize difficult concepts. Review and Student Support: A thorough end-of-chapter review provides students with a concise review tool. Accuracy Checking: The accuracy of the text and problem solutions has been thoroughly checked by other parties. Alternative Coverage: After covering the basic principles in Chapters 1-6, the remaining chapters may be presented in any sequence, without the loss of continuity. Note: You are purchasing a standalone product; MasteringEngineering does not come automatically packaged with this content. If you would like to purchase both the physical text and MasteringEngineering search for ISBN-10: 0133770001 /ISBN-13: 9780133770001. That package includes ISBN-10: 0132777622 /ISBN-13: 9780132777629 and ISBN-10: 0133820807 /ISBN-13: 9780133820805. MasteringEngineering is not a self-paced technology and should only be purchased when required by an instructor. Presents the fundamentals of chemical engineering fluid mechanics with an emphasis on valid and practical approximations in modeling.

This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist's perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex
matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained. Fluid Mechanics has transformed from fundamental subject to application-oriented subject. Over the years, numerous experts introduced number of books on the theme. Majority of them are rather theoretical with numerical problems and derivations. However, due to increase in computational facilities and availability of MATLAB and equivalent software tools, the subject is also transforming into computational perspective. We firmly believe that this new dimension will greatly benefit present generation students. The present book is an effort to tackle the subject in MATLAB environment and consists of 16 chapters. The book can support undergraduate students in fluid mechanics, and can also be referred to as a text/reference book. KEY FEATURES • Explanation of Fluid Mechanics in MATLAB in structured and lucid manner • 161 Example Problems supported by corresponding MATLAB codes compatible with 2016a version • 162 Exercise Problems for reinforced learning • 12 MP4 Videos for the demonstration of MATLAB codes for effective understanding while enhancing thinking ability of readers • A Question Bank containing 261 Representative Questions and 120 Numerical Problems TARGET AUDIENCE Students of B.E/B.Tech and AMIE (Civil, Mechanical and Chemical Engineering) & Useful to students preparing for GATE and UPSC examinations.

Designing for introductory undergraduate courses in fluid mechanics for chemical engineers, this stand-alone textbook illustrates the fundamental concepts and analytical strategies in a rigorous and systematic, yet mathematically accessible manner. Using both traditional and novel applications, it examines key topics such as viscous stresses, surface tension, and the microscopic analysis of incompressible flows which enables students to understand what is important physically in a novel situation and how to use such insights in modeling. The many modern worked examples and end-of-chapter problems provide calculation practice, build confidence in analyzing physical systems, and help develop engineering judgment. The book also features a self-contained summary of the mathematics needed to understand vectors and tensors, and explains solution methods for partial differential equations. Including a full solutions manual for instructors available at www.cambridge.org/deen, this balanced textbook is the ideal resource for a one-semester course.

This book is designed to cover the standard topics in a basic fluid mechanics course in a streamlined manner that meets the learning needs of students better than the dense, encyclopedic manner of traditional texts. This approach helps students connect the math and theory to the physical world and practical applications and apply these connections to solving problems. The text lucidly presents basic analysis techniques and addresses practical concerns and applications, such as pipe flow, open-channel flow, flow measurement, and drag and lift. It offers a strong visual approach with photos, illustrations, and videos included in the text, examples and homework problems to emphasize the practical application of fluid mechanics principles.

This book introduces readers to the latest research and findings from projects focusing on teaching education for sustainable development at universities. In particular, it describes practical experiences, outline courses, training schemes and other initiatives aimed at promoting better teaching on matters related to sustainable development at institutions of higher education. In order to meet the pressing need for publications to support sustainable development education, the book places special emphasis on state-of-the art descriptions of approaches, methods, initiatives and projects from around the world, illustrating how teaching education for sustainable development can be implemented at the international scale. The book represents a timely contribution to the dissemination of approaches and methods that may improve the way we perceive the importance of teaching education for sustainable development, as well as how we implement it.

The focus of this Special Issue is aimed at enhancing the discussion of Engineering Education, particularly related to technological and professional learning. In the 21st century, students face a challenging demand: they are expected to have the best scientific expertise, but also highly developed social skills and qualities like teamwork, creativity, communication, or leadership. Even though students and teachers are becoming more aware of this necessity, there is still a gap between academic life and the professional world. In this Special Edition Book, the reader can find works tackling interesting topics such as educational resources addressing students’ development of competencies, the importance of final year projects linked to professional environments, and multicultural or interdisciplinary challenges.

We inhabit a world of fluids, including air (a gas), water (a liquid), steam (vapour) and the numerous natural and synthetic fluids which are essential to modern-day life. Fluid mechanics concerns the way fluids flow in response to imposed stresses. The subject plays a central role in the education of students of mechanical engineering, as well as chemical engineers, aeronautical and aerospace engineers, and civil engineers. This textbook includes numerous examples of practical applications of the theoretical ideas presented, such as calculating the thrust of a jet engine, the shock- and expansion-wave patterns for supersonic flow over a diamond-shaped aerofoil, the forces created by liquid flow through a pipe bend and/or junction, and the power output of a gas turbine. The first ten chapters of the book are suitable for first-year undergraduates. The latter half covers material suitable for fluid-mechanics courses for undergraduate students. Although knowledge of calculus is essential, this text focuses on the underlying physics. The book emphasizes the role of dimensions and dimensional analysis, and includes additional material on the flow of non-Newtonian liquids than is usual in a general book on fluid mechanics --- a reminder that the majority of synthetic liquids are non-Newtonian in character.

This book gathers papers presented at the 22nd International Conference on Interactive Collaborative Learning (ICL2019), which was held in Bangkok, Thailand, from 25 to 27 September 2019. Covering various fields of interactive and collaborative learning, new learning models and applications, research in engineering pedagogy and project-based learning, the contributions focus on innovative ways in which higher education can respond to the real-world challenges related to the current transformation in the development of education. Since it was established, in 1998, the ICL conference has been devoted to new approaches in learning with a focus on collaborative learning. Today, it is a forum for sharing trends and research findings as well as presenting practical experiences in learning and engineering pedagogy. The book appeals to policymakers, academics, educators, researchers in pedagogy and learning theory, school teachers, and other professionals in the learning industry, and further and continuing education.

Blended Learning combines the conventional face-to-face course delivery with an online component. The synergistic effect of the two modalities has proved to be of superior didactic value to
each modality on its own. The highly improved interaction it offers to students, as well as direct accessibility to the lecturer, adds to the hitherto unparalleled learning outcomes. “Blended Learning in Engineering Education: Recent Developments in Curriculum, Assessment and Practice” highlights current trends in Engineering Education involving face-to-face and online curriculum delivery. This book will be especially useful to lecturers and postgraduate/undergraduate students as well as university administrators who would like to not only get an up-to-date overview of contemporary developments in this field, but also help enhance academic performance at all levels.

Fluid Mechanics is intended for use in Fluid Mechanics courses found in Civil and Environmental, General Engineering, and Engineering Technology and Industrial Management departments. It is also serves as a suitable reference and introduction to Fluid Mechanics principles. Fluid Mechanics provides a comprehensive and well-illustrated introduction to the theory and application of Fluid Mechanics. The text presents a commitment to the development of student problem-solving skills and features many of the same pedagogical aids unique to Hibbeler texts.

MasteringEngineering for Fluid Mechanics is a total learning package that is designed to improve results through personalized learning. This innovative online program emulates the instructor’s office–hour environment, guiding students through engineering concepts from Fluid Mechanics with self-paced individualized coaching. Teaching and Learning Experience This program will provide a better teaching and learning experience—for you and your students. It provides: Individualized Coaching: MasteringEngineering provides students with wrong-answer specific feedback and hints as they work through tutorial homework problems. Problem Solving: A large variety of problem types stress practical, realistic situations encountered in professional practice, with varying levels of difficulty. Visualization: The photos are designed to help students visualize difficult concepts. Review and Student Support: A thorough end-of-chapter review provides students with a concise reviewing tool. Accuracy Checking: The accuracy of the text and problem solutions has been thoroughly checked by other parties. Alternative Coverage: After covering the basic principles in Chapters 1-6, the remaining chapters may be presented in any sequence, without the loss of continuity. Note: You are purchasing a standalone product; MasteringEngineering does not come automatically packaged with this content. If you would like to purchase both the physical text and MasteringEngineering search for ISBN-10: 0133770001 /ISBN-13: 9780133770001. That package includes ISBN-10: 0132777622 /ISBN-13: 9780132777629 and ISBN-10: 0133820807 /ISBN-13: 9780133820805. MasteringEngineering is not a self-paced technology and should only be purchased when required by an instructor.

Many can now conclude that utilizing educational technologies can be considered the primary tools to inspire students to learn. Combining these technologies with the best teaching and learning practices can engage in creativity and imagination in the engineering field. Using Technology Tools to Innovate Assessment, Reporting, and Teaching Practices in Engineering Education highlights the lack of understanding of teaching and learning with technology in higher education engineering programs while emphasizing the important use of this technology. This book aims to be essential for professors, graduate, and undergraduate students in the engineering programs interested learning the appropriate use of technological tools.

Teaching and Learning of Fluid MechanicsMDPI
This book is devoted to the teaching and learning of fluid mechanics. Fluid mechanics occupies a privileged position in the sciences; it is taught in various science departments including physics, mathematics, mechanical, chemical and civil engineering and environmental sciences, each highlighting a different aspect or interpretation of the foundation and applications of fluids. While scholarship in fluid mechanics is vast, expanding into the areas of experimental, theoretical and computational fluid mechanics, there is little discussion among scientists about the different possible ways of teaching this subject. We think there is much to be learned, for teachers and students alike, from an interdisciplinary dialogue about fluids. This volume therefore highlights articles which have bearing on the pedagogical aspects of fluid mechanics at the undergraduate and graduate level.

This is a collection of problems and solutions in fluid mechanics for students of all engineering disciplines. The text is intended to support undergraduate courses and be useful to academic tutors in supervising design projects.

Fluvial Hydraulics Deals With The Hydraulics Of Rivers Flowing Through Credible Material And Transporting Some Of The Material With Them. It Encompasses Mechanics Of Sediment Transportation, Channel Hydraulics, And Channel Formation, Geometry, And Changes In Alluvial Rivers. Even Though The Earlier Civilizations Faced Problems Relating To Alluvial Rivers, The Science Of Fluvial Hydraulics Started Taking Shape Only About 300 Years Back; The Significant Contributions To This Subject Have Been Made Only During The Past Two Centuries. This Book Briefly Outlines The Developments In Fluvial Hydraulics And Gives To The Men Of The Past And Present, Who Have Contributed To The Development Of The Subject, Their Just Due. The Major Emphasis In The Book Being On Hydraulic Aspects, The Peripheral Topics, Such As Erosion And Drainage Patterns, Are Only Briefly Mentioned. It Is Hoped That This Book Will Stimulate Others To Collect Additional Information On The Subject Which Can Form The Basis For A More Exhaustive Record Of The History Of Fluvial Hydraulics.

Original edition: Munson, Young, and Okiishi in 1990.
This Is An Outcome Of Authors Over Thirty Years Of Teaching Fluid Mechanics To Undergraduate And Postgraduate Students. The Book Is Written With The Purpose That, Through This Book, Student Should Appreciate The Strength And Limitations Of The Theory, And Also Its Potential For Application In Solving A Variety Of Engineering Problems Of Practical Importance. It Makes Available To The Students, Appearing For Diploma And Undergraduate Courses In Civil, Chemical And Mechanical Engineering. A Book Which Briefly Introduces The Necessary Theory, Followed By A Set Of Descriptive/ Objective Questions. In Seventeen Chapters The Book Covers The Broad Areas Of Fluid Properties, Kinematics, Dynamics, Dimensional Analysis, Laminar Flow, Boundary Layer Theory, Turbulent Flow, Forces On Immersed Bodies, Open Channel Flow, Compressible And
Unsteady Flows, And Pumps And Turbines.
Issues in Education by Subject, Profession, and Vocation: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Health Education Research. The editors have built Issues in Education by Subject, Profession, and Vocation: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Health Education Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Education by Subject, Profession, and Vocation: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Contains Fluid Flow Topics Relevant to Every Engineer
Based on the principle that many students learn more effectively by using solved problems, Solved Practical Problems in Fluid Mechanics presents a series of worked examples relating fluid flow concepts to a range of engineering applications. This text integrates simple mathematical approaches that

This textbook on fluid mechanics is the result of a series of lecture notes I wrote while serving as a teaching assistant for the introductory fluid mechanics course at Cornell, designed to be read as a complement for introductory learners of fluid mechanics alongside a more generalized text—many of which you may find in the bibliography section at the end of the text. It was created, in part, to address the questions I saw most often from my students that the canon of introductory fluid mechanics textbooks couldn’t answer. What is viscosity, really? Why are the Navier-Stokes equations so difficult to solve, and how do you derive them? Why is drag sometimes linear and sometimes quadratic, but never cubic? In any case, I hope you will find my answers to these questions satisfactory.

This book contains research on the pedagogical aspects of fluid mechanics and includes case studies, lesson plans, articles on historical aspects of fluid mechanics, and novel and interesting experiments and theoretical calculations that convey complex ideas in creative ways. The current volume showcases the teaching practices of fluid dynamicists from different disciplines, ranging from mathematics, physics, mechanical engineering, and environmental engineering to chemical engineering. The suitability of these articles ranges from early undergraduate to graduate level courses and can be read by faculty and students alike. We hope this collection will encourage cross-disciplinary pedagogical practices and give students a glimpse of the wide range of applications of fluid dynamics. Experimental Methods in Heat Transfer and Fluid Mechanics focuses on how to analyze and solve the classic heat transfer and fluid mechanics measurement problems in one book. This work serves the need of graduate students and researchers looking for advanced measurement techniques for thermal, flow, and heat transfer engineering applications. The text focuses on analyzing and solving classic heat transfer and fluid mechanics measurement problems, emphasizing fundamental principles, measurement techniques, data presentation, and uncertainty analysis. Overall, the text builds a strong and practical background for solving complex engineering heat transfer and fluid flow problems. Features Provides students with an understandable introduction to thermal-fluid measurement Covers heat transfer and fluid mechanics measurements from basic to advanced methods Explains and compares various thermal-fluid experimental and measurement techniques Uses a step-by-step approach to explaining key measurement principles Gives measurement procedures that readers can easily follow and apply in the lab

Copyright: 16e5bbcf961447edd7390dd5f05f42d7